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“Hard turbulence” has come to be associated with several features of high-Rayleigh-number Bous-
sinesq convection: thermal plumes, intermittency, nonclassical Nu-Ra scaling (Nu < Ra?/7), large-scale
circulation, and the strongly sheared thermal boundary layers that result. In this paper, we make use of
one of these features, the plumes, to offer an explanation of recent measurements of “waves” propagating
on the boundary layers. The measured “dispersion relation” is reproduced here by a scaling theory in-
corporating the drag force of buoyant plumes and the interaction of these plumes with the boundary lay-

€rs.

PACS number(s): 47.27.Ak, 47.27.Cn

In recent years, high-Rayleigh-number Boussinesq con-
vection [1] has received much attention as a model prob-
lem for transitions to turbulence [2]. The problem is a
classic one of a fluid heated from below wherein the non-
dimensional Rayleigh number Ra=agAL3/(vk), is a
control parameter measuring the strength of the tempera-
ture difference A driving the flow: g is the acceleration
due to gravity; L is the height of the fluid layer; and a, v,
and k are the fluid’s thermal expansion coefficient, kine-
matic viscosity, and thermal diffusivity, respectively. The
experiments of Libchaber and his collaborators have been
instrumental in outlining the nature of the transitions to
turbulence as Ra is increased and have defined the
“nonclassical” regime of hard turbulence for
Ra>Ra; [=4X10’ for a unit aspect (width-to-height)
ratio container]. At the time this new state was
discovered, thermal plumes were hypothesized to be one
of its defining features [2]. Later, visualizations in water
at Ra=Rag verified that coherent structures (.e.,
plumes) do indeed appear at the onset of hard turbulence
[3], developing out of an instability of the thin, diffusive,
thermal boundary layers attached to the heated and
cooled bottom and top surfaces of the cell [4].

The existence of thermal plumes as they appear in hard
turbulence can be understood simply as the nonlinear de-
velopment of the Rayleigh-Taylor instability [5] at the
thin thermal boundary layers. However, the plumes’ for-
mation and subsequent effect on the mean flow are cou-
pled to the strong shear maintained at the boundaries by
the large-scale circulation existing in hard turbulence [6].
An outstanding question has been, “What governs the
formation of these thermal plumes.” Attempts to answer
this question have concentrated on characterizing the
early stage of plume formation as a wave [3,7].

The inception of this wave theory has been motivated
primarily by the highly suggestive images produced by
Zocchi, Moses, and Libchaber [3] using water in a unit
aspect ratio cell and liquid crystal pellets that change
color in accord with the water’s temperature [3]. In this
way, Zocchi, Moses, and Libchaber have observed wave-
like patterns on a boundary layer in hard turbulence (see
plate I of Ref. [3]). They go on to measure the “disper-
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sion relation” for these “waves” and suggest a fit to their
data of v, <1172, where v, is the velocity of a “wave” of
size /. Though this expression only captures the qualita-
tive trend in the experimental data and does not fit its de-
tailed structure (see Fig. 6 of Ref. [3]), Zocchi, Moses,
and Libchaber are encouraged that its form is identical to
a well-known wave-dispersion relation—that of gravity
waves; they are quick to point out, however, that an
identification of the ‘“waves” they observe as gravity
waves is less than satisfying given that the boundary lay-
ers are unstably stratified and therefore posses no gravita-
tional restoring force for wave motion. A final complica-
tion for any wave-based theory, which Zocchi, Moses,
and Libchaber appreciate and point out, is that their col-
lection of measurements exhibits an unusually larger
scatter to be attributable to a wavelike dispersion rela-
tion; indeed, Zocchi, Moses, and Libchaber must average
all values of v, obtained for a given / before a ““dispersion
relation” is discernible.

An alternate interpretation of the “waves” visualized
by Zocchi, Moses, and Libchaber is provided by Shelley
and Vinson [7] who construct a simple two-dimensional
(2-D) model of a sheared thermal boundary layer in an at-
tempt to understand the formation, morphology, and
motion of plumes. Neutrally stable traveling waves exist
for this model and, as Shelley and Vinson have pointed
out, the dispersion relation does not agree, even in a qual-
itative sense, with the experimental results of Zocchi,
Moses, and Libchaber: The model predicts slow propaga-
tion of waves possessing the longest wavelengths and
propagation of the smallest-wavelength waves with the
free-stream velocity just outside the thermal boundary
layer. The experiment of Zocchi, Moses, and Libchaber,
on the other hand, demonstrates just the opposite:
Small-wavelength disturbances on the thermal boundary
layer are correlated with low velocities, while the
largest-wavelength disturbances move faster than the
mean free-stream velocity. Shelley and Vinson explain
this discrepancy by suggesting that “... the observed
waves reflect some other collective action of the system.”
Recent numerical simulations of 2D hard turbulence re-
ported by Werne support this interpretation [8].
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Figure 1 presents a sequence of images of the cold
thermal boundary layer from the 2D numerical simula-
tions in Ref. [8]. A careful study of the Figure il-
luminates the mechanism giving rise to plume formation
in the simulations. Furthermore, this mechanism sug-
gests a simple model which correctly predicts the struc-
ture of the velocity-length-scale correlations (i.e., the
“dispersion relation”) measured by Zocchi, Moses, and
Libchaber. The first image in the sequence [Fig. 1(a)]
shows the impact of the cold boundary layer by a large
hot plume which has been ejected from the opposite
boundary. This hot plume has traveled with the large-
scale circulation up along the left sidewall. Once it
reaches the upper left corner in the cell and impacts the
leftmost edge of the cold boundary layer, it is redirected
horizontally along the upper boundary layer. As it
moves to the right along the cold boundary layer [Figs.
1(b)-1(d)], it drags a good deal of cold fluid with it. In
this way, a small cold “plume” (i.e., a disturbance on the
cold thermal boundary layer) is born and driven across
the cell. By the time the newly formed cold “plume” is
forced to the right side of the cell [Fig. 1(d)], its horizon-
tal velocity is reduced by the increasing adverse pressure
gradient which exists as a result of the right sidewall. At
the right side of the cell, several (=2 to 4 for simulations
with Ra=8.192X107) of these small “plumes” coalesce
to form a single large plume; this coalescence is evident in

Figs. 1(a)-1(e). The dynamics of the large plume which
results is eventually dominated by gravity, causing the
plume to plunge towards the lower boundary [Figs.
1(f)- 1(h)] where it continues the process.

Note that this picture of plume formation does not in-
corporate waves on the boundary layer. Though few
plumes may develop from the nonlinear growth of travel-
ing waves during quiescent periods, most of the plumes in
the simulations are initiated by the bombardment of large
plumes ejected from the opposite boundary layer. (This
may also have been the case for the experiments of Zoc-
chi, Moses, and Libchaber; however, we cannot know be-
cause the liquid crystal used for the visualizations had a
color response of only A/2 or less and therefore could
not simultaneously indicate the temperature of a bound-
ary layer and the large plumes emitted from the opposite
boundary.) Because the boundary layer’s bombardment
by plumes is continual, it is questionable that a dispersion
relation characteristic of traveling waves would be evi-
dent at all. It is more likely that the velocity—length-
scale correlations observed by Zocchi, Moses, and Lib-
chaber tell us about the characteristics of the bombarding
plumes themselves rather than about the oscillatory
modes of the boundary layer which they impact. With
this motivation, we attempt to understand the observed
“dispersion relation” by first considering the forces act-
ing on large plumes before they impact the boundary lay-

FIG. 1. Formation of a cold plume on the top thermal boundary layer with Ra=8.192X 10’ and o =7 (from the numerical results
of Werne [8]). White (black) represents hot (cold) fluid. Each image shows the top 38% of the cell. Time advances by
1.5X 107%L?/(4x) between each image, with a being the earliest in the sequence. (a)-(d) depict the development of cold “distur-
bances” as a hot plume impacts the upper boundary layer. Several of these disturbances coalesce (a)—(b) to form a cold plume which

detaches near the right corner (f)—(h).
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er. For a large hot plume, free of ¢ither boundary layer,
the primary forces acting are the buoyancy force
Fp=p,Vg; the gravitational force F,=—pVg; and the
drag force Fy=—C,Spo?/2, where V is the volume of
fluid encompassed by the plume, Cj, is the plume’s drag
coefficient, and S is the surface area of the plume on
which the drag force acts. p and p, are the densities of
the plume and the ambient fluid, respectively. The equa-
tion of motion of the plume then becomes
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Here, c is the terminal velocity of the plume and A is a
characteristic length scale for plume acceleration. The
drag coefficient C;, has the general form C,=C,Re”?,
where C| is a constant and Re is the Reynolds number of
a plume, Re=vl /v. The exponent y depends on both the
plume’s shape and its orientation to the mean flow [9].
Though hard turbulence produces plumes of varying
shapes, on the average plumes are much longer than they
are thick (/ >>A, where /= plume length and A= plume
thickness) and are aligned parailel to the mean flow
when they travel vertically along the cell’s sidewalls.
Furthermore, for the experiment of Zocchi, Moses,
and Libchaber, the flow around individual plumes is
laminar, i.e., not turbulent: For Ra=1.1X10° the
maximum Re obtained by the largest plumes is
Re~(6 mm/s)(180 mm)/(1 mm?/s)=~103, (Ref. [10],
while the transition to turbulence occurs at Re~10° for
objects with this shape. Hence, we should use y =1, ap-
propriate for thin objects aligned with a laminar flow, i.e.,
objects whose drag is dominated by “skin friction” as op-
posed to “pressure drag” [11]. The plume’s terminal ve-
locity then becomes
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Note that Eq. (3) is true only if (py—p)/p, is independent
of I, which will be the case for the largest plumes whose
temperature (or density) contrast from their surroundings
will be maximal (equal to that of the boundary layer from
which they were ejected). For smaller plumes which were
formed only from fluid near the edge of the boundary
layer, the density contrast will be somewhat smaller.
If we assume that the size of a plume, /, is indicative
of the greatest depth into the boundary layer d which
participated in the plume’s formation, i.e., d </,
then we have from (py—p)/py<d that (py—p)/py=<L.
[(pp—p)/po=d is obtained by noting that the tempera-
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ture profile within a boundary layer is approximately
linear.] Therefore, for these smaller plumes, for which d
is less than the boundary-layer thickness, Eq. (2) becomes

clcxl(1+7/)/(2—}/) 29
or
¢ xl fory=1. (3"

These terminal velocities [Eqs. (3) and (3')] will be at-
tained by plumes (large and small, respectively) if
L —(6¢)U>> A, where 8t is the time required for the
plume to move between the bottom and top boundaries
and U is the speed for the background roll. This con-
straint is equivalent to

U+v L
<< —
. A 4)

where v is the plume’s velocity relative to the roll. With
the recent measurements by Tilgner, Belmonte, and Lib-
chaber, we estimate U <5.5 mm/s and v>1.7 mm/s,
and hence (U +v) /v =4, for Ra=1.1X10° [10]. In addi-
tion, A=A since both Cp and p/p, are =1 [see Eq. (1)].
Furthermore, because A is roughly the thermal
boundary-layer thickness, L /A=~2Nu=260 at the same
values of Ra [12]. Therefore, Eq. (4) is clearly satisfied,
and plumes will reach their terminal velocity in traveling
between the boundaries.

In order to correlate velocities and length scales of dis-
turbances on the boundary layer, we must evaluate the
effectiveness of the incoming plumes, described above, to
produce disturbances of a given size and velocity. First,
the velocity of a disturbance on the boundary layer v, is
approximately equal to the velocity of the bombarding
plumes creating the disturbance, vy, =c;: As the large
plume travels along the boundary layer, it drags fluid
from the boundary layer with it. Second, larger plumes
give rise to larger disturbances: The larger the impacting
plume, the more momentum it can exchange with the
fluid in the boundary layer. Thus, like the relationships
represented in Egs. (3) and (3’) for buoyant plumes mov-
ing with their terminal velocity, larger disturbances on
the boundary layer move with larger velocities. Further-
more, if the length scale of the disturbance on the bound-
ary layer is proportional to the length scale of the plume
which created it, then the “dispersion relation” for dis-
turbances is identical to either Eq. (3) or Eq. (3'), depend-
ing on the size of the impacting plume. Hence, for small,
slow disturbances, we expect v; </, while for large, fast
disturbances, we should observe v, < !/3 [13].

Figure 2 compares these predictions with the data from
Zocchi, Moses, and Libchaber [3]. The agreement be-
tween data and theory is quite good. The abruptness of
the transition from the v, <[ regime to the v, «</'/? re-
gime lends credence to our interpretation that this transi-
tion results when plumes become large enough to obtain
the maximum possible density contrast characteristic of
the boundary layers. Furthermore, the velocity at the
transition point, v,, provides a valuable consistency check
for the present theory. Computing the terminal velocity
from Eq. (1) [estimating A and C), as before and comput-
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FIG. 2. Velocity-length-scale correlations for disturbances
on the thermal boundary layers in hard turbulence. The experi-
mental data of Zocchi, Moses, and Libchaber [3] is presented
along with the power laws (arbitrary normalization) predicted
by the present theory.

ing (po—p)/pp=al/2 with A=8°C, as in Zocchi,
Moses, and Libchaber], we obtain ¢, =5.1 mm/s, in ex-
cellent agreement with the experimental value of v, =5.5
mm/s.

A noteworthy consequence of this simple picture of
plume formation is a simple explanation of the possibility
of disturbances moving faster than the mean free-stream
velocity just outside the thermal boundary layer. Indeed,
the largest plumes contribute a substantial positive fluc-
tuation to the mean “wind.” Disturbances created by
these largest plumes must, therefore, move faster than the
mean wind.

It should also be pointed out that this simple picture
easily explains the large scatter in the raw data of Zocchi,
Moses, and Libchaber: Bombarding plumes with different
shapes necessarily have different drag coefficients Cp, and,
hence, different terminal velocities; therefore, different
plumes which give rise to disturbances on the boundary
layer with the same length scale, /,;, may strike the
boundary layer with a large range of velocities. It is only
when the average plume of a given size / is considered
that the velocity-length-scale correlation becomes ap-
parent.

An important point should be made concerning the
robust nature of the prediction that large disturbances on
the boundary layers move faster than small ones. In par-
ticular, the detailed properties of plumes [specifically,
y =1 and (py—p)/p, = I for small plumes but is indepen-
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dent of / for large plumes] are unnecessary to conclude
that large disturbances must move faster than small ones
within the general framework of this simple theory. To
illustrate, if we consider general y and (p,—p)/pox1?,
we obtain v, < [B*t7)/2~7) the exponent of which will be
positive if B+ >0 (since ¥ takes on a maximum value of
1 for “creeping flow” [9], restricting 2—y >0). Further-
more, note that B must be positive because larger plumes,
produced as a result of more violent eruptions of the
thermal boundary layers, are more intense than smaller
plumes. Also, ¥ will be positive unless the plume moves
so quickly with respect to the surrounding fluid that it
develops a turbulent boundary layer on its own “surface”
(and experiences the ‘“‘drag crisis”) [9]. This will not
occur for Ra=1.1X10° because the plumes are “lami-
nar.” It follows quite generally, therefore, that v; must
scale with a positive power of /. It would be interesting
to discover if the velocity—length-scale correlations ex-
hibit a qualitative difference when Ra is higher and the
plumes become turbulent.

CONCLUSION

In summary, the experimental velocity—-length-scale
correlation for disturbances propagating on the boundary
layers in hard turbulence is reproduced here by a simple
scaling theory. The crucial step in the analysis is to aban-
don the notion that the observed disturbances are waves
propagating along the boundary layers and to recognize
that these disturbances result from plumes bombarding
the boundary layers. Properties of the plumes, primarily
the drag they experience and their density contrast, are
used to construct the theory; the measurement of these
properties would prove useful in evaluating the validity
of specific assumptions made in the theory. Nevertheless,
a general prediction of this theory is that large distur-
bances on the boundary layers move faster than small
ones, regardless of specific assumptions concerning the
detail properties of plumes.
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FIG. 1. Formation of a cold plume on the top thermal boundary layer with Ra=8.192X 10" and 0 =7 (from the numerical results
of Werne [8]). White (black) represents hot (cold) fluid. Each image shows the top 38% of the cell. Time advances by
1.5X 107 *L?/(4k) between each image, with a being the earliest in the sequence. (a)-(d) depict the development of cold “distur-
bances” as a hot plume impacts the upper boundary layer. Several of these disturbances coalesce (a)—(b) to form a cold plume which
detaches near the right corner (f)-(h).



